Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
J Imaging ; 10(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38667978

ABSTRACT

Magnetoencephalography (MEG) is a noninvasive neuroimaging technique widely recognized for epilepsy and tumor mapping. MEG clinical reporting requires a multidisciplinary team, including expert input regarding each dipole's anatomic localization. Here, we introduce a novel tool, the "Magnetoencephalography Atlas Viewer" (MAV), which streamlines this anatomical analysis. The MAV normalizes the patient's Magnetic Resonance Imaging (MRI) to the Montreal Neurological Institute (MNI) space, reverse-normalizes MNI atlases to the native MRI, identifies MEG dipole files, and matches dipoles' coordinates to their spatial location in atlas files. It offers a user-friendly and interactive graphical user interface (GUI) for displaying individual dipoles, groups, coordinates, anatomical labels, and a tri-planar MRI view of the patient with dipole overlays. It evaluated over 273 dipoles obtained in clinical epilepsy subjects. Consensus-based ground truth was established by three neuroradiologists, with a minimum agreement threshold of two. The concordance between the ground truth and MAV labeling ranged from 79% to 84%, depending on the normalization method. Higher concordance rates were observed in subjects with minimal or no structural abnormalities on the MRI, ranging from 80% to 90%. The MAV provides a straightforward MEG dipole anatomic localization method, allowing a nonspecialist to prepopulate a report, thereby facilitating and reducing the time of clinical reporting.

2.
mBio ; : e0058224, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651867

ABSTRACT

The impacts of microsporidia on host individuals are frequently subtle and can be context dependent. A key example of the latter comes from a recently discovered microsporidian symbiont of Daphnia, the net impact of which was found to shift from negative to positive based on environmental context. Given this, we hypothesized low baseline virulence of the microsporidian; here, we investigated the impact of infection on hosts in controlled conditions and the absence of other stressors. We also investigated its phylogenetic position, ecology, and host range. The genetic data indicate that the symbiont is Ordospora pajunii, a newly described microsporidian parasite of Daphnia. We show that O. pajunii infection damages the gut, causing infected epithelial cells to lose microvilli and then rupture. The prevalence of this microsporidian could be high (up to 100% in the lab and 77% of adults in the field). Its overall virulence was low in most cases, but some genotypes suffered reduced survival and/or reproduction. Susceptibility and virulence were strongly host-genotype dependent. We found that North American O. pajunii were able to infect multiple Daphnia species, including the European species Daphnia longispina, as well as Ceriodaphnia spp. Given the low, often undetectable virulence of this microsporidian and potentially far-reaching consequences of infections for the host when interacting with other pathogens or food, this Daphnia-O. pajunii symbiosis emerges as a valuable system for studying the mechanisms of context-dependent shifts between mutualism and parasitism, as well as for understanding how symbionts might alter host interactions with resources. IMPORTANCE: The net outcome of symbiosis depends on the costs and benefits to each partner. Those can be context dependent, driving the potential for an interaction to change between parasitism and mutualism. Understanding the baseline fitness impact in an interaction can help us understand those shifts; for an organism that is generally parasitic, it should be easier for it to become a mutualist if its baseline virulence is relatively low. Recently, a microsporidian was found to become beneficial to its Daphnia hosts in certain ecological contexts, but little was known about the symbiont (including its species identity). Here, we identify it as the microsporidium Ordospora pajunii. Despite the parasitic nature of microsporidia, we found O. pajunii to be, at most, mildly virulent; this helps explain why it can shift toward mutualism in certain ecological contexts and helps establish O. pajunii is a valuable model for investigating shifts along the mutualism-parasitism continuum.

3.
Brain Sci ; 14(2)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38391747

ABSTRACT

Drug-resistant epilepsy (DRE) is often treated with surgery or neuromodulation. Specifically, responsive neurostimulation (RNS) is a widely used therapy that is programmed to detect abnormal brain activity and intervene with tailored stimulation. Despite the success of RNS, some patients require further interventions. However, having an RNS device in situ is a hindrance to the performance of neuroimaging techniques. Magnetoencephalography (MEG), a non-invasive neurophysiologic and functional imaging technique, aids epilepsy assessment and surgery planning. MEG performed post-RNS is complicated by signal distortions. This study proposes an independent component analysis (ICA)-based approach to enhance MEG signal quality, facilitating improved assessment for epilepsy patients with implanted RNS devices. Three epilepsy patients, two with RNS implants and one without, underwent MEG scans. Preprocessing included temporal signal space separation (tSSS) and an automated ICA-based approach with MNE-Python. Power spectral density (PSD) and signal-to-noise ratio (SNR) were analyzed, and MEG dipole analysis was conducted using single equivalent current dipole (SECD) modeling. The ICA-based noise removal preprocessing method substantially improved the signal-to-noise ratio (SNR) for MEG data from epilepsy patients with implanted RNS devices. Qualitative assessment confirmed enhanced signal readability and improved MEG dipole analysis. ICA-based processing markedly enhanced MEG data quality in RNS patients, emphasizing its clinical relevance.

4.
Article in English | MEDLINE | ID: mdl-38194120

ABSTRACT

BACKGROUND: With increasing constraints on healthcare resources, greater attention is being focused on improved resource utilization. Prior studies have demonstrated safety of same-day discharge following CIED implantation but are limited by vague protocols with long observation periods. In this study, we evaluate the safety of an expedited 2 hour same-day discharge protocol following CIED implantation. METHODS: Patients undergoing CIED implantation at three centers between 2015 and 2021 were included. Procedural, demographic, and adverse event data were abstracted from the electronic health record. Patients were divided into same-day discharge (SDD) and delayed discharge (DD) cohorts. The primary outcome was complications including lead malfunction requiring revision, pneumothorax, hemothorax, lead dislodgement, lead perforation with tamponade, and mortality within 30 days of procedure. Outcomes were compared between the two cohorts using the χ2 test. RESULTS: A total of 4543 CIED implantation procedures were included with 1557 patients (34%) in the SDD cohort. SDD patients were comparatively younger, were more likely to be male, and had fewer comorbidities than DD patients. Among SDD patients, the mean time to post-operative chest X-ray was 2.6 h. SDD had lower rates of complications (1.3% vs 2.1%, p = 0.0487) and acute care utilization post-discharge (9.6% vs 14.0%, p < 0.0001). There was no difference in the 90-day infection rate between the cohorts. CONCLUSIONS: An expedited 2 hour same-day discharge protocol is safe and effective with low rates of complications, infection, and post-operative acute care utilization.

5.
Ecology ; 105(2): e4235, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185479

ABSTRACT

Outbreaks of environmentally transmitted parasites require that susceptible hosts encounter transmission stages in the environment and become infected, but we also know that transmission stages can be in the environment without triggering disease outbreaks. One challenge in understanding the relationship between environmental transmission stages and disease outbreaks is that the distribution and abundance of transmission stages outside of their hosts have been difficult to quantify. Thus, we have limited data about how changes in transmission stage abundance influence disease dynamics; moreover, we do not know whether the relationship between transmission stages and outbreaks differs among parasite species. We used digital PCR to quantify the environmental transmission stages of five parasites in six lakes in southeastern Michigan every 2 weeks from June to November 2021. At the same time, we quantified infection prevalence in hosts and host density. Our study focused on eight zooplankton host species (Daphnia spp. and Ceriodaphnia dubia) and five of their parasites from diverse taxonomic groups (bacteria, yeast, microsporidia, and oomycete) with different infection mechanisms. We found that parasite transmission stage concentration increased prior to disease outbreaks for all parasites. However, parasites differed significantly in the relative timing of peaks in transmission stage concentration and infection outbreaks. The "continuous shedder" parasites had transmission stage peaks at the same time as or slightly after the outbreak peaks. In contrast, parasites relying on host death for transmission ("obligate killers") had transmission stage peaks before outbreak peaks. For most parasites, lakes with outbreaks had higher spore concentrations than those without outbreaks, especially once an outbreak began; the exception was for a parasite, Pasteuria ramosa, with very strong genotypic specificity of infection. Overall, our results show that disease outbreaks are tightly linked to transmission stage concentration; outbreaks were preceded by increases in transmission stage concentration in the environment and then were fueled by the production of more transmission stages during the outbreak itself, with concentrations decreasing to pre-outbreak levels as outbreaks waned. Thus, tracking transmission stages in the environment improves our understanding of the drivers of disease outbreaks and reveals how parasite traits may affect these dynamics.


Subject(s)
Parasites , Animals , Daphnia/parasitology , Host Specificity , Disease Outbreaks/veterinary , Lakes , Host-Parasite Interactions
6.
JMIR Cardio ; 7: e49345, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38096021

ABSTRACT

BACKGROUND: Risk factor modification, in particular exercise and weight loss, has been shown to improve outcomes for patients with atrial fibrillation (AF). However, access to structured supporting programs is limited. Barriers include the distance from appropriate facilities, insurance coverage, work or home responsibilities, and transportation. Digital health technology offers an opportunity to address this gap and offer scalable interventions for risk factor modification. OBJECTIVE: This study aims to assess the feasibility and effectiveness of a 12-week asynchronous remotely supervised exercise and patient education program, modeled on cardiac rehabilitation programs, in patients with AF. METHODS: A total of 12 patients undergoing catheter ablation of AF were enrolled in this pilot study. Participants met with an exercise physiologist for a supervised exercise session to generate a personalized exercise plan to be implemented over the subsequent 12-week program. Disease-specific education was also provided as well as instruction in areas such as blood pressure and weight measurement. A digital health toolkit for self-tracking was provided to facilitate monitoring of exercise time, blood pressure, weight, and cardiac rhythm. The exercise physiologist remotely monitored participants and completed weekly check-ins to titrate exercise targets and provide further education. The primary end point was program completion. Secondary end points included change in self-tracking adherence, weight, 6-minute walk test (6MWT), waist circumference, AF symptom score, and program satisfaction. RESULTS: The median participant age was 67.5 years, with a mean BMI of 33.8 kg/m2 and CHADs2VASC (Congestive Heart Failure, Hypertension, Age [≥75 years], Diabetes, Stroke/Transient Ischemic Attack, Vascular Disease, Age [65-74 years], Sex [Female]) of 1.5. A total of 11/12 (92%) participants completed the program, with 94% of expected check-ins completed and 2.9 exercise sessions per week. Adherence to electrocardiogram and blood pressure tracking was fair at 81% and 47%, respectively. Significant reductions in weight, waist circumference, and BMI were observed with improvements in 6MWT and AF symptom scores (P<.05) at the completion of the program. For program management, a mean of 2 hours per week or 0.5 hours per patient per week was required, inclusive of time for follow-up and intake visits. Participants rated the program highly (>8 on a 10-point Likert scale) in terms of the impact on health and wellness, educational value, and sustainability of the personal exercise program. CONCLUSIONS: An asynchronous remotely supervised exercise program augmented with AF-specific educational components for patients with AF was feasible and well received in this pilot study. While improvements in patient metrics like BMI and 6MWT are encouraging, they should be viewed as hypothesis generating. Based on insights gained, future program iterations will include particular attention to improved technology for data aggregation, adjustment of self-monitoring targets based on observed adherence, and protocol-driven exercise titration. The study design will need to incorporate strategies to facilitate the recruitment of a diverse and representative participant cohort.

7.
Nat Commun ; 14(1): 5285, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37648685

ABSTRACT

Dynamin-1 is a large GTPase with an obligatory role in synaptic vesicle endocytosis at mammalian nerve terminals. Heterozygous missense mutations in the dynamin-1 gene (DNM1) cause a novel form of epileptic encephalopathy, with pathogenic mutations clustering within regions required for its essential GTPase activity. We reveal the most prevalent pathogenic DNM1 mutation, R237W, disrupts dynamin-1 enzyme activity and endocytosis when overexpressed in central neurons. To determine how this mutation impacted cell, circuit and behavioural function, we generated a mouse carrying the R237W mutation. Neurons from heterozygous mice display dysfunctional endocytosis, in addition to altered excitatory neurotransmission and seizure-like phenotypes. Importantly, these phenotypes are corrected at the cell, circuit and in vivo level by the drug, BMS-204352, which accelerates endocytosis. Here, we demonstrate a credible link between dysfunctional endocytosis and epileptic encephalopathy, and importantly reveal that synaptic vesicle recycling may be a viable therapeutic target for monogenic intractable epilepsies.


Subject(s)
Drug Resistant Epilepsy , Dynamin I , Animals , Mice , Dynamin I/genetics , Seizures/genetics , Disease Models, Animal , Biological Transport , Mammals
8.
Cell Rep ; 42(6): 112633, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37314927

ABSTRACT

Phosphatidylinositol 4-kinase IIα (PI4KIIα) generates essential phospholipids and is a cargo for endosomal adaptor proteins. Activity-dependent bulk endocytosis (ADBE) is the dominant synaptic vesicle endocytosis mode during high neuronal activity and is sustained by glycogen synthase kinase 3ß (GSK3ß) activity. We reveal the GSK3ß substrate PI4KIIα is essential for ADBE via its depletion in primary neuronal cultures. Kinase-dead PI4KIIα rescues ADBE in these neurons but not a phosphomimetic form mutated at the GSK3ß site, Ser-47. Ser-47 phosphomimetic peptides inhibit ADBE in a dominant-negative manner, confirming that Ser-47 phosphorylation is essential for ADBE. Phosphomimetic PI4KIIα interacts with a specific cohort of presynaptic molecules, two of which, AGAP2 and CAMKV, are also essential for ADBE when depleted in neurons. Thus, PI4KIIα is a GSK3ß-dependent interaction hub that silos essential ADBE molecules for liberation during neuronal activity.


Subject(s)
1-Phosphatidylinositol 4-Kinase , Glycogen Synthase Kinase 3 , Rats , Animals , Humans , 1-Phosphatidylinositol 4-Kinase/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3/metabolism , Rats, Sprague-Dawley , Synaptic Vesicles/metabolism , Endocytosis/physiology , Phosphorylation
9.
J Arrhythm ; 39(3): 250-302, 2023 06.
Article in English | MEDLINE | ID: mdl-37324757

ABSTRACT

Remote monitoring is beneficial for the management of patients with cardiovascular implantable electronic devices by impacting morbidity and mortality. With increasing numbers of patients using remote monitoring, keeping up with higher volume of remote monitoring transmissions creates challenges for device clinic staff. This international multidisciplinary document is intended to guide cardiac electrophysiologists, allied professionals, and hospital administrators in managing remote monitoring clinics. This includes guidance for remote monitoring clinic staffing, appropriate clinic workflows, patient education, and alert management. This expert consensus statement also addresses other topics such as communication of transmission results, use of third-party resources, manufacturer responsibilities, and programming concerns. The goal is to provide evidence-based recommendations impacting all aspects of remote monitoring services. Gaps in current knowledge and guidance for future research directions are also identified.

10.
Europace ; 25(5)2023 05 19.
Article in English | MEDLINE | ID: mdl-37208301

ABSTRACT

Remote monitoring is beneficial for the management of patients with cardiovascular implantable electronic devices by impacting morbidity and mortality. With increasing numbers of patients using remote monitoring, keeping up with higher volume of remote monitoring transmissions creates challenges for device clinic staff. This international multidisciplinary document is intended to guide cardiac electrophysiologists, allied professionals, and hospital administrators in managing remote monitoring clinics. This includes guidance for remote monitoring clinic staffing, appropriate clinic workflows, patient education, and alert management. This expert consensus statement also addresses other topics such as communication of transmission results, use of third-party resources, manufacturer responsibilities, and programming concerns. The goal is to provide evidence-based recommendations impacting all aspects of remote monitoring services. Gaps in current knowledge and guidance for future research directions are also identified.


Subject(s)
Monitoring, Physiologic , Telemetry , Humans
11.
J Neurosci ; 43(11): 2002-2020, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36759195

ABSTRACT

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a severe early-onset epileptic encephalopathy resulting mainly from de novo mutations in the X-linked CDKL5 gene. To determine whether loss of presynaptic CDKL5 function contributes to CDD, we examined synaptic vesicle (SV) recycling in primary hippocampal neurons generated from Cdkl5 knockout rat males. Using a genetically encoded reporter, we revealed that CDKL5 is selectively required for efficient SV endocytosis. We showed that CDKL5 kinase activity is both necessary and sufficient for optimal SV endocytosis, since kinase-inactive mutations failed to correct endocytosis in Cdkl5 knockout neurons, whereas the isolated CDKL5 kinase domain fully restored SV endocytosis kinetics. Finally, we demonstrated that CDKL5-mediated phosphorylation of amphiphysin 1, a putative presynaptic target, is not required for CDKL5-dependent control of SV endocytosis. Overall, our findings reveal a key presynaptic role for CDKL5 kinase activity and enhance our insight into how its dysfunction may culminate in CDD.SIGNIFICANCE STATEMENT Loss of cyclin-dependent kinase like 5 (CDKL5) function is a leading cause of monogenic childhood epileptic encephalopathy. However, information regarding its biological role is scarce. In this study, we reveal a selective presynaptic role for CDKL5 in synaptic vesicle endocytosis and that its protein kinase activity is both necessary and sufficient for this role. The isolated protein kinase domain is sufficient to correct this loss of function, which may facilitate future gene therapy strategies if presynaptic dysfunction is proven to be central to the disorder. It also reveals that a CDKL5-specific substrate is located at the presynapse, the phosphorylation of which is required for optimal SV endocytosis.


Subject(s)
Spasms, Infantile , Synaptic Vesicles , Animals , Male , Rats , Cyclin-Dependent Kinases/metabolism , Endocytosis/physiology , Spasms, Infantile/genetics , Spasms, Infantile/metabolism , Synaptic Vesicles/metabolism
12.
MMWR Morb Mortal Wkly Rep ; 71(43): 1366-1373, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36302226

ABSTRACT

Introduction: CDC estimates that influenza resulted in 9-41 million illnesses, 140,000-710,000 hospitalizations, and 12,000-52,000 deaths annually during 2010-2020. Persons from some racial and ethnic minority groups have historically experienced higher rates of severe influenza and had lower influenza vaccination coverage compared with non-Hispanic White (White) persons. This report examines influenza hospitalization and vaccination rates by race and ethnicity during a 12-13-year period (through the 2021-22 influenza season). Methods: Data from population-based surveillance for laboratory-confirmed influenza-associated hospitalizations in selected states participating in the Influenza-Associated Hospitalization Surveillance Network (FluSurv-NET) from the 2009-10 through 2021-22 influenza seasons (excluding 2020-21) and influenza vaccination coverage data from the Behavioral Risk Factor Surveillance System (BRFSS) from the 2010-11 through 2021-22 influenza seasons were analyzed by race and ethnicity. Results: From 2009-10 through 2021-22, age-adjusted influenza hospitalization rates (hospitalizations per 100,000 population) were higher among non-Hispanic Black (Black) (rate ratio [RR] = 1.8), American Indian or Alaska Native (AI/AN; RR = 1.3), and Hispanic (RR = 1.2) adults, compared with the rate among White adults. During the 2021-22 season, influenza vaccination coverage was lower among Hispanic (37.9%), AI/AN (40.9%), Black (42.0%), and other/multiple race (42.6%) adults compared with that among White (53.9%) and non-Hispanic Asian (Asian) (54.2%) adults; coverage has been consistently higher among White and Asian adults compared with that among Black and Hispanic adults since the 2010-11 season. The disparity in vaccination coverage by race and ethnicity was present among those who reported having medical insurance, a personal health care provider, and a routine medical checkup in the past year. Conclusions and Implications for Public Health Practice: Racial and ethnic disparities in influenza disease severity and influenza vaccination coverage persist. Health care providers should assess patient vaccination status at all medical visits and offer (or provide a referral for) all recommended vaccines. Tailored programmatic efforts to provide influenza vaccination through nontraditional settings, along with national and community-level efforts to improve awareness of the importance of influenza vaccination in preventing illness, hospitalization, and death among racial and ethnic minority communities might help address health care access barriers and improve vaccine confidence, leading to decreases in disparities in influenza vaccination coverage and disease severity.


Subject(s)
Influenza Vaccines , Influenza, Human , Adult , United States/epidemiology , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Ethnicity , Seasons , Vaccination Coverage , Minority Groups , Vaccination , Hospitalization , Vital Signs
13.
Brain Behav ; 12(9): e2720, 2022 09.
Article in English | MEDLINE | ID: mdl-36053126

ABSTRACT

INTRODUCTION: The purpose of this study is to determine if delta waves, measured by magnetoencephalography (MEG), increase in adolescents due to a sports concussion. METHODS: Twenty-four adolescents (age 14-17) completed pre- and postseason MRI and MEG scanning. MEG whole-brain delta power was calculated for each subject and normalized by the subject's total power. In eight high school football players diagnosed with a concussion during the season (mean age = 15.8), preseason delta power was subtracted from their postseason scan. In eight high school football players without a concussion (mean age = 15.7), preseason delta power was subtracted from postseason delta power and in eight age-matched noncontact controls (mean age = 15.9), baseline delta power was subtracted from a 4-month follow-up scan. ANOVA was used to compare the mean differences between preseason and postseason scans for the three groups of players, with pairwise comparisons based on Student's t-test method. RESULTS: Players with concussions had significantly increased delta wave power at their postseason scans than nonconcussed players (p = .018) and controls (p = .027). CONCLUSION: We demonstrate that a single concussion during the season in adolescent subjects can increase MEG measured delta frequency power at their postseason scan. This adds to the growing body of literature indicating increased delta power following a concussion.


Subject(s)
Athletic Injuries , Brain Concussion , Football , Adolescent , Brain Concussion/diagnostic imaging , Humans , Magnetic Resonance Imaging , Magnetoencephalography , Schools
14.
J Neurosurg Pediatr ; 29(4): 387-396, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35061991

ABSTRACT

OBJECTIVE: Youth football athletes are exposed to repetitive subconcussive head impacts during normal participation in the sport, and there is increasing concern about the long-term effects of these impacts. The objective of the current study was to determine if strain-based cumulative exposure measures are superior to kinematic-based exposure measures for predicting imaging changes in the brain. METHODS: This prospective, longitudinal cohort study was conducted from 2012 to 2017 and assessed youth, male football athletes. Kinematic data were collected at all practices and games from enrolled athletes participating in local youth football organizations in Winston-Salem, North Carolina, and were used to calculate multiple risk-weighted cumulative exposure (RWE) kinematic metrics and 36 strain-based exposure metrics. Pre- and postseason imaging was performed at Wake Forest School of Medicine, and diffusion tensor imaging (DTI) measures, including fractional anisotropy (FA), and its components (CL, CP, and CS), and mean diffusivity (MD), were investigated. Included participants were youth football players ranging in age from 9 to 13 years. Exclusion criteria included any history of previous neurological illness, psychiatric illness, brain tumor, concussion within the past 6 months, and/or contraindication to MRI. RESULTS: A total of 95 male athletes (mean age 11.9 years [SD 1.0 years]) participated between 2012 and 2017, with some participating for multiple seasons, resulting in 116 unique athlete-seasons. Regression analysis revealed statistically significant linear relationships between the FA, linear coefficient (CL), and spherical coefficient (CS) and all strain exposure measures, and well as the planar coefficient (CP) and 8 strain measures. For the kinematic exposure measures, there were statistically significant relationships between FA and RWE linear (RWEL) and RWE combined probability (RWECP) as well as CS and RWEL. According to area under the receiver operating characteristic (ROC) curve (AUC) analysis, the best-performing metrics were all strain measures, and included metrics based on tensile, compressive, and shear strain. CONCLUSIONS: Using ROC curves and AUC analysis, all exposure metrics were ranked in order of performance, and the results demonstrated that all the strain-based metrics performed better than any of the kinematic metrics, indicating that strain-based metrics are better discriminators of imaging changes than kinematic-based measures. Studies relating the biomechanics of head impacts with brain imaging and cognitive function may allow equipment designers, care providers, and organizations to prevent, identify, and treat injuries in order to make football a safer activity.


Subject(s)
Brain Concussion , Football , Adolescent , Benchmarking , Brain Concussion/diagnostic imaging , Brain Concussion/etiology , Child , Cohort Studies , Diffusion Tensor Imaging , Football/injuries , Humans , Longitudinal Studies , Male , Prospective Studies
15.
Ann Biomed Eng ; 49(10): 2852-2862, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34549344

ABSTRACT

Approximately 3.5 million youth and adolescents in the US play football, a sport with one of the highest rates of concussion. Repeated subconcussive head impact exposure (HIE) may lead to negative neurological sequelae. To understand HIE as an independent predictive variable, quantitative cumulative kinematic metrics have been developed to capture the volume (i.e., number), severity (i.e., magnitude), and frequency (i.e., time-weighting by the interval between head impacts). In this study, time-weighted cumulative HIE metrics were compared with directional changes in diffusion tensor imaging (DTI) metrics. Changes in DTI conducted on a per-season, per-player basis were assessed as a dependent variable. Directional changes were defined separately as increases and decreases in the number of abnormal voxels relative to non-contact sport controls. Biomechanical and imaging data from 117 athletes (average age 11.9 ± 1.0 years) enrolled in this study was analyzed. Cumulative HIE metrics were more strongly correlated with increases in abnormal voxels than decreases in abnormal voxels. Additionally, across DTI sub-measures, increases and decreases in mean diffusivity (MD) had the strongest relationships with HIE metrics (increases in MD: average R2 = 0.1753, average p = 0.0002; decreases in MD: average R2 = 0.0997, average p = 0.0073). This encourages further investigation into the physiological phenomena represented by directional changes.


Subject(s)
Athletic Injuries/diagnostic imaging , Brain/diagnostic imaging , Craniocerebral Trauma/diagnostic imaging , Football/injuries , Biomechanical Phenomena , Child , Diffusion Tensor Imaging , Head , Humans
16.
Neuroimage ; 241: 118402, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34274419

ABSTRACT

Magnetoencephalography (MEG) is a functional neuroimaging tool that records the magnetic fields induced by neuronal activity; however, signal from non-neuronal sources can corrupt the data. Eye-blinks, saccades, and cardiac activity are three of the most common sources of non-neuronal artifacts. They can be measured by affixing eye proximal electrodes, as in electrooculography (EOG), and chest electrodes, as in electrocardiography (ECG), however this complicates imaging setup, decreases patient comfort, and can induce further artifacts from movement. This work proposes an EOG- and ECG-free approach to identify eye-blinks, saccades, and cardiac activity signals for automated artifact suppression. The contribution of this work is three-fold. First, using a data driven, multivariate decomposition approach based on Independent Component Analysis (ICA), a highly accurate artifact classifier is constructed as an amalgam of deep 1-D and 2-D Convolutional Neural Networks (CNNs) to automate the identification and removal of ubiquitous whole brain artifacts including eye-blink, saccade, and cardiac artifacts. The specific architecture of this network is optimized through an unbiased, computer-based hyperparameter random search. Second, visualization methods are applied to the learned abstraction to reveal what features the model uses and to bolster user confidence in the model's training and potential for generalization. Finally, the model is trained and tested on both resting-state and task MEG data from 217 subjects, and achieves a new state-of-the-art in artifact detection accuracy of 98.95% including 96.74% sensitivity and 99.34% specificity on the held out test-set. This work automates MEG processing for both clinical and research use, adapts to the acquired acquisition time, and can obviate the need for EOG or ECG electrodes for artifact detection.


Subject(s)
Artifacts , Brain/physiology , Magnetoencephalography/methods , Neural Networks, Computer , Signal Processing, Computer-Assisted , Adolescent , Adult , Aged , Blinking/physiology , Child , Female , Humans , Magnetoencephalography/standards , Male , Middle Aged , Young Adult
17.
J Neurosurg Pediatr ; : 1-10, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34130257

ABSTRACT

OBJECTIVE: The objective of this study was to characterize changes in head impact exposure (HIE) across multiple football seasons and to determine whether changes in HIE correlate with changes in imaging metrics in youth football players. METHODS: On-field head impact data and pre- and postseason imaging data, including those produced by diffusion tensor imaging (DTI), were collected from youth football athletes with at least two consecutive seasons of data. ANCOVA was used to evaluate HIE variations (number of impacts, peak linear and rotational accelerations, and risk-weighted cumulative exposure) by season number. DTI scalar metrics, including fractional anisotropy, mean diffusivity, and linear, planar, and spherical anisotropy coefficients, were evaluated. A control group was used to determine the number of abnormal white matter voxels, which were defined as 2 standard deviations above or below the control group mean. The difference in the number of abnormal voxels between consecutive seasons was computed for each scalar metric and athlete. Linear regression analyses were performed to evaluate relationships between changes in HIE metrics and changes in DTI scalar metrics. RESULTS: There were 47 athletes with multiple consecutive seasons of HIE, and corresponding imaging data were available in a subsample (n = 19) of these. Increases and decreases in HIE metrics were observed among individual athletes from one season to the next, and no significant differences (all p > 0.05) in HIE metrics were observed by season number. Changes in the number of practice impacts, 50th percentile impacts per practice session, and 50th percentile impacts per session were significantly positively correlated with changes in abnormal voxels for all DTI metrics. CONCLUSIONS: These results demonstrate a significant positive association between changes in HIE metrics and changes in the numbers of abnormal voxels between consecutive seasons of youth football. Reducing the number and frequency of head impacts, especially during practice sessions, may decrease the number of abnormal imaging findings from one season to the next in youth football.

18.
J Neurotrauma ; 38(19): 2763-2771, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34039024

ABSTRACT

The purpose of this study is to assess the relationship between regional white matter diffusion imaging changes and finite element strain measures in nonconcussed youth football players. Pre- and post-season diffusion-weighted imaging was performed in 102 youth football subject-seasons, in which no concussions were diagnosed. The diffusion data were normalized to the IXI template. Percent change in fractional anisotropy (%ΔFA) images were generated. Using data from the head impact telemetry system, the cumulative maximum principal strain one times strain rate (CMPS1 × SR), a measure of the cumulative tensile brain strain and strain rate for one season, was calculated for each subject. Two linear regression analyses were performed to identify significant positive or inverse relationships between CMPS1 × SR and %ΔFA within the international consortium for brain mapping white matter mask. Age, body mass index, days between pre- and post-season imaging, previous brain injury, attention disorder diagnosis, and imaging protocol were included as covariates. False discovery rate correction was used with corrected alphas of 0.025 and voxel thresholds of zero. Controlling for all covariates, a significant, positive linear relationship between %ΔFA and CMPS1 × SR was identified in the bilateral cingulum, fornix, internal capsule, external capsule, corpus callosum, corona radiata, corticospinal tract, cerebral and middle cerebellar peduncle, superior longitudinal fasciculus, and right superior fronto-occipital fasciculus. Post hoc analyses further demonstrated significant %ΔFA differences between high-strain football subjects and noncollision control athletes, no significant %ΔFA differences between low-strain subjects and noncollision control athletes, and that CMPS1 × SR significantly explained more %ΔFA variance than number of head impacts alone.


Subject(s)
Brain Concussion/diagnostic imaging , Brain Concussion/physiopathology , Football/injuries , White Matter/diagnostic imaging , White Matter/physiopathology , Adolescent , Age Factors , Anisotropy , Brain Concussion/etiology , Case-Control Studies , Child , Cohort Studies , Diffusion Magnetic Resonance Imaging , Humans , Male , White Matter/pathology
19.
Sci Adv ; 7(18)2021 04.
Article in English | MEDLINE | ID: mdl-33931449

ABSTRACT

Synaptic vesicle (SV) release probability (Pr), determines the steady state and plastic control of neurotransmitter release. However, how diversity in SV composition arises and regulates the Pr of individual SVs is not understood. We found that modulation of the copy number of the noncanonical vesicular SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor), vesicle-associated membrane protein 4 (VAMP4), on SVs is key for regulating Pr. Mechanistically, this is underpinned by its reduced ability to form an efficient SNARE complex with canonical plasma membrane SNAREs. VAMP4 has unusually high synaptic turnover and is selectively sorted to endolysosomes during activity-dependent bulk endocytosis. Disruption of endolysosomal trafficking and function markedly increased the abundance of VAMP4 in the SV pool and inhibited SV fusion. Together, our results unravel a new mechanism for generating SV heterogeneity and control of Pr through coupling of SV recycling to a major clearing system that regulates protein homeostasis.

20.
Evolution ; 75(6): 1513-1524, 2021 06.
Article in English | MEDLINE | ID: mdl-33751559

ABSTRACT

Spontaneous mutations fuel evolutionary processes and differ in consequence, but the consequences depend on the environment. Biophysical considerations of protein thermostability predict that warm temperatures may systematically increase the deleteriousness of mutation. We sought to test whether mutation reduced fitness more when measured in an environment that reflected climate change projections for temperature. We investigated the effects of spontaneous mutations on life history, size, and fitness in 21 mutation accumulation lines and 12 control lines of Daphnia pulex at standard and elevated (+4℃) temperatures. Warmer temperature accelerated life history and reduced body length and clutch sizes. Mutation led to reduced mean clutch sizes and fitness estimates at both temperatures. We found no evidence of a systematic temperature-mutation interaction on trait means, although some lines showed evidence of beneficial mutation at one temperature and deleterious mutation at the other. However, trait variances are also influenced by mutation, and we observed increased variances due to mutation for most traits. For variance of the intrinsic rate of increase and some reproductive traits, we found significant temperature-mutation interactions, with a larger increase due to mutation in the warmer environment. This suggests that selection on new mutations will be more efficient at elevated temperatures.


Subject(s)
Climate Change , Daphnia/genetics , Genetic Fitness , Mutation Accumulation , Animals , Body Size , Clutch Size , Life History Traits , Mutagenesis , Phenotype , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...